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Abstract. The paper provides an overview of existing interaction techniques for controlling Unmanned Aerial 

Vehicle (UAV) systems. This work focuses on user interfaces with non-traditional input modalities such as gestures, 

speech, and gaze direction. Although we analyze interaction with UAV systems, most of the findings can be applied 

to Human-Robot Interaction in general. We report on interaction techniques employed to control single as well as 

multiple UAV systems, define intuitiveness of input vocabularies in the considered context, and introduce a new 

classification scheme based on the mental models underlying the interaction vocabulary. 
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1 Introduction  

Controlling an Unmanned Aerial Vehicle (UAV) system is challenging and in many cases claims the operator’s 

constant attention and guidance. A high operator’s workload is one of the major factors causing air accidents [1]. The 

deliberate development of user interfaces for UAVs which significantly reduces the high workload for operators, 

especially in a multi-UAV case, is crucially important. 

A potential way to overcome the problem of an unnecessarily high workload is the utilization of natural and intuitive 

interaction techniques. Apparently, natural modalities such as speech and gestures have the potential to bring 

naturalness to Human-Robot Interaction, while a proper vocabulary might lead to a greater intuitiveness of an 

interface. This leads to several questions: How do we develop an intuitive input vocabulary? Why may an input 

vocabulary turn out to be counterintuitive, even though each individual entry seems to make sense? In order to address 

these questions, we leverage the concept of mental models and apply it to user interfaces for Human-UAV Interaction 

by clustering supportive examples into three categories: Imitative, Instrumented, and Intelligent.  

The remainder of this paper is organized as follows. Section 2 overviews existing natural interaction techniques, 

defines the notion of intuitiveness based on the concept of mental models, introduces a new classification scheme for 

input vocabularies, and clusters these vocabularies in accordance with the introduced classification scheme. 

Subsections 2.1-2.3 provide examples of corresponding classes of mental models, analyze previous work in terms of 

intuitiveness, and outline questions that need to be addressed. Subsection 2.4 discusses aspects related to the 

development of interaction techniques. Section 3 concludes and discusses possible directions for future research. 

2 Interaction Techniques 

UAVs that have originally been used in military missions are starting to be used in various civil applications such as 

surveillance, search and rescue, and transportation. In the scope of this paper, we deliberately focus on civil 

applications and novice users. The existence of a wide range of applications where the use of UAVs is beneficial, 
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together with various interesting scientific challenges associated with 

them (e.g., flight stabilization, navigation, and coordination) constitute 

the key reasons for the booming scientific interest in UAVs. In 

addition, the recent commercial availability of low-cost UAVs is 

making UAV systems affordable to a larger range of researchers and 

practitioners.  

Depending on the application of a UAV system, existing interfaces 

vary significantly. From entire Control Ground Stations (CGSs), in 

which often more than one operator is involved, and standard 

‘Windows, Icons, Menus, Pointer’ (WIMP) interfaces that require 

extensive training for an operator to become professional, to simpler 

remote controllers and touchscreen-based interfaces that also require 

preliminary instructions. The emergence of new technologies creates 

the possibility of bringing current interaction techniques to the next 

level. Recently, much work has been carried out on the development 

of immersive flight control using advanced video feedback (e.g., 

Google and Epson Moverrio glasses, Oculus Rift) and natural flight 

control with gestures using various sensing devices to capture data for 

gesture recognition (e.g., Kinect, Leap controller, Myo armband).  

Along with the applications listed above, where experienced human 

operators control the flight, nowadays, we observe a growing trend 

towards the development of systems where novice users interact with 

UAVs [2]. This defines the need for a user interface that provides an 

easy and fast way to interact with a system without extensive training. 

One way to reduce the time for preliminary preparation and ease 

operators’ work is to develop a ‘natural’ user interface. It is a widely 

held view that the use of natural cues peculiar to Human-Human 

interaction could contribute to the development of a more natural 

Human-UAV Interaction. Over the past decade, researchers have 

shown increased interest in the development of natural interaction 

techniques using non-traditional input modalities such as speech, 

gestures, and gaze direction. In particular, gestures have received 

special attention and various gesture-based input vocabularies were 

suggested, including hand [3,4], head [5,6], and upper body 

movements [7]. Apart from gestures, research has started exploring 

gaze direction [8], face pose [9,10,11,12], and even brain activity [13] 

as potential input modalities. 

Usually, researchers employ elicitation techniques such as Wizard 

of Oz sessions and interviews to let users define the input vocabulary. 

In this way, researchers aim at approaching intuitive interaction with a 

system. Up to now, a few authors have begun to explore users’ natural 

behavior (speech and gestures) for steering a group of UAVs [14] and 

a single UAV [15,16] using Wizard of Oz sessions. Burke and Lasenby 

[17] conducted interview sessions to gather users’ gesture suggestions 

for steering a UAV. In the remaining works on natural interaction 

Classification schemes for gesture-based 

interaction 

In gesture studies, many existing classification 

schemes of gestures originated from Efron’s work 

[24] distinguishing gestures whose meaning is de-

pendent (deictic, physiographic, emblematic) or 

independent (batons, ideographic) of speech. 

Among them, McNeil’s classification [25] is one 

of the most frequently referred to. McNeil outlined 

gestures that visualize what is being said (iconic 

and metaphoric) and support the flow of speech 

(beat and deictic). Ekman et al. [26] outlined also 

manipulators that refer to unintentional move-

ments (e.g., scratching), regulators that serve to 

maintain contact (e.g., head nods), and emotional 

expressions. Kendon [27] classified gestures based 

on their formality and speech-dependency, starting 

from the least formal that hardly can be correctly 

interpreted without spoken language (gesticula-

tion) to those that can be understood independently 

from speech (language-like, pantomimes, and em-

blems) and ending with the most formal (sign lan-

guages).  

The early gesture studies considered gestures 

that are used to enhance speech. In the field of Hu-

man-Computer Interaction (HCI), gestures are of-

ten used without speech and serve for different 

from narrative purposes (e.g., manipulate objects 

on a touchscreen, navigate a vehicle). Thus, the ex-

isting classifications could not be directly applied 

to gestures used in modern interactive systems. 

During the last decade, we have observed the 

emergence of new classifications for specific do-

mains of HCI such as surface computing [28] and 

3D motion gestures for smartphones [29]. In this 

work, we introduce a new classification of mental 

models associated with the input vocabulary that is 

the first attempt to classify natural input vocabu-

laries in the field of Human-UAV Interaction. Dif-

ferent from previous works that classify individual 

gestures, we use a concept of mental models to 

classify the entire input vocabulary. Input vocabu-

laries for the considered interaction can include 

any free-space gestures as well as gaze direction, 

facial expressions, and speech.  
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techniques with UAVs considered in this paper, the researchers first suggested an input vocabulary and only then let 

users test it.  

Once users’ suggestions are collected, the next step is to select the ‘best’ of them for the final vocabulary. Typically, 

researchers either select the most frequently observed users’ suggestions [18] or they choose the suggestions with the 

highest guessability score [19]. However, none of these two selection approaches guarantees coherence of the obtained 

vocabulary. In a general sense, a vocabulary is coherent if there is a logical relationship between its components. A 

possible way to evaluate the coherence of an input vocabulary is to reveal one command and ask a user to guess the 

remaining ones. For instance, a person is told that moving the right hand up requests a UAV to fly up. Then, keeping 

this hint in mind, the person should be able to guess most of the remaining basic motion commands (Figure 1, Hand). 

In this example, the person simply imitates UAV movements with corresponding hand movements. Thus, all the 

gestures are related based on a single metaphor that implies imitation of UAV movements. For our approach, we 

consider a gesture set to be coherent if all its gestures adhere to one and the same metaphor. This metaphor evokes a 

certain mental model that, in turn, defines a certain behavior or, in the considered example, certain gestures.  

 

Figure 1. Examples of gesture sets (minor rows) for each of the three classes of mental models (major rows) for the 

specified commands (columns).  

Selecting input commands according to a single metaphor promises to promote intuitive interaction. A system is 

considered to be intuitive if the way it works corresponds to our expectations. Thus, it should be fast to learn and easy 

to use. Mental models that define our expectations are formed by previously acquired knowledge and experiences. 

Through the use of metaphors that refer to common knowledge, it is possible to evoke certain mental models and, 
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thus, encourage certain behavioral patterns. We consider a gesture set intuitive if a single hint is enough to define all 

its gestures. In order to evoke a certain mental model and, as a result, a certain behavior, a user needs to understand 

the metaphor that guides to the intended mental model.  

Previous studies on natural interaction with UAVs have used various input vocabularies. The key distinctive feature 

of the suggested vocabularies is the underlying mental model that is used to draw an analogy between an input 

command and a vehicle motion. Prior to presenting a new classification scheme, we provide an example that 

demonstrates what is meant by a mental model in this context. Suppose a person is asked to navigate a UAV along a 

certain path using gestures. Most likely, the first question that would arise is ‘Which gestures should I use?’. Then, 

instead of acquainting the person with a vocabulary, he is told to imagine holding a virtual UAV. Steering a UAV 

could then be realized by simply mapping the motion of the virtual UAV to the real one (Figure 1, Virtual UAV 1-2). 

Following this hint, a person can intuitively control the flight of the UAV without further instructions. In this case, 

the given scenario suggests a certain behavioral pattern. Intuitive interaction is achieved by giving hints or, in other 

words, by priming the users’ mind with particular ideas. These ideas associated with different behaviors are related to 

certain mental models. Therefore, a mental model defines behavior that becomes intuitive for an individual or a group 

of individuals under a certain scenario. 

Many of the works discussed below try to achieve intuitiveness of interaction by making use of different metaphors 

that evoke certain mental models. We propose the following classification scheme of mental models: Imitative, 

Instrumented, and Intelligent. In the Imitative class, a direct mapping between a performed gesture and a vehicle 

motion is used, e.g., rotation of the head changes the vehicle’s orientation. The Instrumented class is defined by the 

presence of an illusion about navigating a vehicle through an intermediate link, e.g., a joystick. Associating a vehicle 

with a certain living creature that is equipped with some sort of intelligence is a key feature of the Intelligent class, 

e.g., treating a UAV as if it were a bird.  

Next, the presented classes are described in detail. Underlying mental models of the reported input vocabularies 

are discussed along with the analysis of these vocabularies with respect to intuitiveness. The concept of mental models 

is used to answer questions raised in Section 1. 

2.1 Imitative Class 

The Imitative class implies that a vehicle is capable of imitating movements performed by an operator. This interaction 

can be seen as a direct mapping of operator’s movements to the vehicle motion. In order to exemplify this idea, several 

input vocabularies are presented. Among them are hand, head, upper body, and full body mental models. 

Hand. Liebeskind [4] made a demonstration of navigating a UAV partially using the Imitative class of mental models. 

The author used a correspondence between hand and vehicle motion to command a UAV to move up, down, left, right, 

forward, and backward, whereas to command a UAV to take off and land a user had to perform a gesture that mimics 

a ‘left-click’ gesture familiar to computer users. However, this gesture belongs rather to the Instrumented class 

(discussed in Subsection 2.2) as the intermediary link in a form of the imaginary mouse is used. Therefore, this 

example uses a mixture of gestures from different classes of mental models. The hypothesis that switching between 

classes leads to a higher mental workload seems to be reasonable. However, a formal study to test this hypothesis is 

needed. Another interesting aspect is that in order to command a UAV to rotate left and right, an operator rotates the 

hand about the horizontal instead of the vertical axis. This choice can be explained by the fact that the expected 

gestures (Figure 1, Hand) are not physically ergonomic. 

Head. Higuchi and Rekimoto [5] suggested a gesture set based on the idea of synchronizing the position and 

orientation of an operator's head with those of a UAV. This gesture set is considered to be intuitive as its gestures 

belong to the single mental model and, therefore, could be easily guessed by novice users. The limitation of the 

presented vocabulary is that an operator’s workspace has to be of the same size as the environment to explore. To 
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overcome this limitation, the authors suggested commanding a UAV to fly forward and backward by tilting one’s 

head forward and backward, respectively.  

Upper Body and Full Body. Pfeil et al. [7] presented the following example of the upper body Imitative class: An 

operator navigates a UAV with arms spread to imitate wings (Figure 1, Upper Body). The employed mental model 

implies that the operator bends or rotates the upper body depending on the desired vehicle movement. However, the 

up and down gestures do not perfectly fit to the underlying mental model. Ideally, the operator would try to move 

higher by standing on toes to command a UAV to go up and move lower by bending knees to command it to go down. 

However, the final selection of the gestures might have been influenced by the aspects related to physical ergonomics. 

Pittman and LaViola [6] presented an example of the full body Imitative class. In order to command a UAV to fly 

left, right, forward, and backward, an operator simply takes a step to the corresponding side. For the rotation 

commands, the operator rotates to the required side. Standing on toes and squatting down is used to command a UAV 

to fly up and down. 

2.2 Instrumented Class 

The Instrumented class suggests that an operator controls a vehicle through an imaginary intermediate link that can 

be an imaginary physical object, e.g., a joystick, a link that allows to manipulate a vehicle like a marionette or the 

ability to use super force to move a vehicle without touching it, e.g., repelling or attracting a vehicle with an open 

palm. Interaction techniques related to this class exploit the operator’s assumptions that are based on knowledge and 

experience about certain objects or activities. For example, when controlling the flight of a UAV using an illusion of 

doing it with a joystick, an operator needs prior knowledge about the way the device works. 

The literature review has revealed a few examples that exploit the Instrumented class. Wheller [20] presented a 

virtual joystick and keyboard interfaces used to control the flight of a simulated UAV. Another example of navigating 

an Unmanned Ground Vehicle (UGV) with an imaginary joystick was presented by Fong et al. [21]. The suggested 

vocabulary is shown in Figure 1 (Joystick). The raised left arm indicates the gesture-based interaction mode, while the 

right hand specifies a direction to move. Provided that an operator has the knowledge and experience needed to use a 

joystick, all the gestures are intuitive besides the stop gesture that represents an outlier. In addition, the requirement 

to keep the left arm up reduces intuitiveness and increases physical demand of the gesture set. 

Two other examples of the Instrumented class are presented by Pfeil et al. [7]. These gesture sets also exploit the 

idea of using an imaginary physical object to navigate a UAV. In particular, an operator imagines holding a virtual 

UAV. While keeping this idea in mind, the operator changes the position and orientation of this UAV. These changes 

are directly translated into movements of the real UAV. As soon as the operator returns hands to the neutral position, 

a UAV stops its current movement. In the first gesture set (Figure 1, Virtual UAV 1), the operator is standing while 

steering a UAV, while in the second gesture set the operator is sitting. Apart from the positions, different gestures are 

used to command a UAV to fly to the left and right sides. In the second gesture set, instead of moving both hands to 

the corresponding side, the operator moves the left hand slightly down and the right hand slightly up. These gestures 

might be more intuitive for users with an experience in steering a UAV who are aware that in order to move a UAV 

forward, backward, left, and right it is required to tilt it forward, backward, left, and right, respectively. Following this 

logic, the gestures used in this set for the forward and backward commands should be as shown in Figure 1 (Virtual 

UAV 2) to constitute a coherent set. However, possibly due to implementation-related problems (small amplitude 

movements are harder to recognize), the authors employed the gestures from the first gesture set. 

In their study, Pfeil et al. examined six different input vocabularies. Among them are (1) the original touchscreen-

based interface, (2) the vocabulary associated with the Imitative class (Figure 1, Upper Body), (3-4) two vocabularies 

associated with the Instrumented class described here, (5) the vocabulary based on the assumption that an operator is 

a king/queen, and (6) the vocabulary that implies that the hands of an operator represent the control sticks of a typical 
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game controller. Gestures used in (5) and (6) are unlikely to be intuitive for a novice user as there are no obvious 

mental models associated with the given scenarios. This statement is supported by the analysis reported in the paper: 

the majority of participants evaluated vocabularies (1), (5), (6) as the least natural and vocabularies (2)-(4) as the most 

natural. This result underlines the importance of using mental models when developing a vocabulary. 

2.3 Intelligent Class 

The key feature of the Intelligent class as its name implies is that a UAV is treated as an intelligent creature. This 

explains the fact that, in many cases, this class is deemed to resemble natural interaction the most. For example, when 

a person is instructed where to go, people tend to describe a place verbally and redundantly point out a direction with 

their index finger. This kind of interaction was observed by several researchers who explored the natural behavior of 

novice users when steering a single UAV [15,16] and multiple UAVs [14]. 

Recently, Lichtenstern et al. [22] proposed an interaction technique that makes use of a pointing gesture to activate 

one particular UAV out of a group of UAVs. By selecting UAVs one by one, an operator composes a team. As soon 

as the team is selected, the operator lifts the left arm. Next, the UAVs are imitating movements shown by the operator’s 

right hand. It is interesting to note that the described technique exploits a combination of the Intelligent and Imitative 

classes. The former is used to activate an agent, while the latter is used to control movements of the selected vehicle(s). 

However, the intuitiveness of the interaction is reduced by the following two aspects: (1) each time a vehicle is 

selected, the operator confirms the selection by touching the right arm with the left hand; (2) the operator has to lift 

the left arm to indicate a switch from the ‘selection’ to the ‘navigation’ phase. The use of ‘out of mental model’ 

gestures might be the main source of errors observed during training sessions. The validity of this statement would be 

interesting to test in further work. Nagi et al. [10] also suggested using a pointing gesture to select an individual 

vehicle. A two-handed pointing gesture is used to select a group of UAVs that fall within the indicated range, and to 

select all the vehicles, an operator puts her hands together. 

Eye contact is another important non-verbal communication channel that is a vital component of face-to-face 

communication. Often it is sufficient to look at a person to attract his attention. This technique that is characteristic to 

Human-Human interaction has inspired several research works. Couture-Beil et al. [23] presented a technique where 

an operator simply looks at a vehicle to activate it. Milligan et al. [9] suggested a technique that allows interacting not 

only with a single vehicle but with a group of vehicles. A vehicle or a group of neighboring vehicles is selected when 

an operator looks at it while making a gesture ‘encircling’ it. Then, the operator shows a target location using the 

pointing gesture. In contrast to the technique described previously, the Intelligent class is used for both, to select and 

navigate vehicles.  

As an extension of previous works to the 3D case, Monajjemi et al. [12] presented a technique of interacting with 

a team of UAVs. Similarly, an operator selects a UAV by looking at it. However, in this case, the operator can add or 

remove a UAV to or from a selected group of UAVs using the following vocabulary: the right- or left-hand wave 

corresponds to adding or removing a vehicle, respectively, the right- and left-hand wave activates all UAVs. In terms 

of intuitiveness, it can be noted that a gesture used to select a UAV might be associated with the ‘hello’ gesture. Just 

as the hand wave gesture can be used to attract the attention of a person, the operator performs this gesture to attract 

the UAV’s ‘attention’. However, the left-hand wave and both hand-wave gestures are not that intuitive due to the lack 

of obvious association with corresponding commands, but at least they can be learned easily. 

Ng and Sharlin [3] associated the flight of a UAV with the flight of a bird and presented a gesture set inspired by 

falconers’ interaction with birds (Figure 1, Falconer’s Interaction). Admittedly, this gesture set is intuitive for a 

specific group of people, but not for novice users. The authors asked several participants to test and give their feedback 

on the suggested gesture set. Unsurprisingly, the gestures for the stop and come commands were selected as the most 

intuitive. Obviously, the reason why participants considered these gestures as intuitive is their frequent use in day-to-

day communication. 
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It is worth mentioning that users tend to give high-level commands when using the Intelligent class. For example, 

to guide a vehicle to a target point, a user would just point out a direction instead of giving low-level commands, e.g., 

up, left, and forward. This can be explained by the fact that a user associates a vehicle with an intelligent creature, 

which in turn leads to higher expectations about its capabilities.  

2.4 Discussion  

The key difference of the presented classes is the expectations they raise. The highest expectations are associated with 

the Intelligent class. In this case, an operator assumes that a vehicle is able to interpret high-level commands. The 

Instrumented class implies that a vehicle is able to translate given low-level commands. The lowest expectations 

correspond to the Imitative class, where a vehicle simply copies the gestures. The Intelligent and Instrumented classes 

require a more complex interpretation mechanism compared to the Imitative class where it is enough to track operator’s 

body movements and directly map them to the movements of a UAV. The need for initial instructions is another 

distinctive feature of the classes. Ideally, techniques associated with the Intelligent class allow an operator to navigate 

a system following the natural ‘flair’ without a need for prior instructions. For the Imitative and Instrumented class, a 

hint specifying the type of interaction is needed. Besides the hint, the Instrumented class requires certain knowledge 

and experience from an operator. It seems that the Intelligent class should be given a preference. However, in some 

cases operators might feel unnatural to interact with a vehicle as with an intelligent creature. A study is needed to 

resolve this issue. 

The concept of mental models is a powerful tool that helps to develop an intuitive interaction technique. Interaction 

designers must consider various aspects when choosing a proper mental model. The target group is among the key 

aspects that have to be considered when defining a vocabulary. As mentioned previously, while the vocabulary based 

on the falconer’s interaction may be intuitive for a specific group of people, it is not for novice users. Thus, in order 

to achieve intuitive interaction with a system, the key requirement is the involvement of a focus group during the 

development of the input vocabulary in order to observe natural behavior. From this behavior the mental models can 

be derived, which potentially guided users in their choices for commands. The identified users’ mental models should 

be considered when defining an input vocabulary with a preference given to the most frequently observed models. 

Evoking a certain mental model helps to ‘understand’ the entire vocabulary instead of memorizing each gesture 

individually. Thus, we recommend to avoid, if possible, a mixture of mental models for commands associated with a 

common type of tasks (e.g., navigation tasks or formation control) as switching between different mental models might 

lead to a higher level of mental workload and cause errors due to confusion of commands.  

In addition, physiological (e.g., left- and right-handedness) and cultural differences (e.g., nodding head means ‘yes’ 

or ‘no’, depending on the society) have to be taken into account. Important aspects related to physical ergonomics do 

not need to be explained. The field of application is another aspect to consider, as it has a significant impact on 

interface requirements and on interaction techniques accordingly. For example, a technique that requires intensive 

physical effort would have the potential to be applied in an entertainment sector, e.g., video games, but it might not 

be acceptable for serious applications, e.g., search and rescue missions. 

To sum up, in order to achieve intuitive interaction, (1) the input vocabulary has to employ mental models that are 

known to the considered group of people; (2) the natural behavior of users has to be analyzed to discover user-defined 

mental models; (3) mixing gestures from different mental models in an input vocabulary should be avoided; (4) 

important aspects such as physiological and cultural differences, physical ergonomics, and the field of application 

have to be considered in the final input vocabulary. 

The works discussed here focus on users with little or no prior experience with UAVs. Thus, the suggested input 

vocabularies cover only commands for basic interaction with UAVs (e.g., navigation or forming a group of UAVs) 

and are not intended to replace complex GCSs and WIMP interfaces. As we have seen, more advanced commands 

such as takeoff and land are left out by many of the discussed works, while the basic motion commands as up, down, 
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left, right, rotate left, rotate right, forward, and backward are covered by most researchers. One reason might be that 

it is difficult to find a gesture that would fit well. In such cases, the natural limit of expressive power of gestures can 

be compensated with accompanying voice commands. 

Previous work on natural interaction with UAVs has shown that users, in case they had freedom to choose, tended 

to mix gestures from different mental models [16]. The inability of one mental model to cover all the commands (e.g., 

the ‘left-click’ gesture discussed in Subsection 2.1) and factors related to physical ergonomics (e.g., the Up & Down 

gestures in Figure 1, Upper Body) are among possible reasons that induce users to mix mental models. Admittedly, 

these issues are limitations of ‘single mental model’ vocabularies. Another reason is that it might be simply more 

natural for users to randomly switch between different mental models rather than to stick to a single one when in 

‘gesture storming’ mode. Ideally, an interface has to allow users to interact with a system as they prefer by letting 

them spontaneously switch between mental models. A vocabulary of such an interface has to include several 

vocabulary entries for the considered commands. Extension of the input vocabulary with all the possible ‘synonyms’, 

if at all possible, is most likely to significantly complicate implementation of the system. In addition, developers have 

to consider cultural differences that might cause different interpretations of some vocabulary entries and deal with 

homonyms (when the same entry is used for different commands). Thus, a pragmatic approach is to limit the users’ 

‘freedom’ of choice for the input vocabulary by guiding them to a certain mental model that uniquely defines the way 

to interact with a system. 

The overview of interaction techniques revealed that integration of multiple modalities is still in its infancy and 

further research is required. A combination of natural modalities such as gestures, speech, gaze direction, and facial 

expressions has the potential to further increase the naturalness and intuitiveness. Previous work has demonstrated 

strong advantages of interfaces that allow a user to interact with a system through multiple ‘natural’ modalities [30]. 

First steps have been taken to explore a combination of gestures with speech for UAV navigation [14,15,16]. It shows 

that instead of sticking to one modality, the users tend to combine speech and gestures. This finding confirms that a 

multimodal interaction is indeed more natural. Further work is needed to investigate other natural modalities and their 

combinations. The art of developing intuitive techniques for multi-agent UAV systems is another area that requires 

exploration. The discussed techniques consider the case of navigating a group of UAVs as a single agent meaning that 

once a group of UAVs is selected, all group members perform identical actions. Further research is needed to develop 

intuitive and natural interaction techniques for multi-agent UAV systems that include specific commands for group 

interaction such as split, get together, and commands for formation control.  

Most of the techniques assume that a UAV system is within operator’s field of view. In this case, the use of natural 

input modalities is likely to increase the naturalness and intuitiveness of Human-UAV Interaction. Flight navigation 

with indirect observation of the system requires an in-depth study. Another aspect that is still in its infancy is 

‘socialization’ of UAVs that defines the expected and acceptable behavior of a UAV in a certain scenario. Currently, 

we observe first attempts to understand how users envision a UAV as a ‘companion’ [31,32].  

3 Conclusion 

It is a challenging and multidisciplinary problem to develop natural and intuitive interaction techniques for UAV 

systems. This article provided an overview of the work done so far, introduced a classification scheme, and analyzed 

the interaction techniques in terms of intuitiveness. In the scope of our work, we defined a notion of intuitiveness as 

a feature of an input vocabulary that makes all its entries apparent for users with or even without a single hint about 

the underlying mental model. We strongly argue for considering the underlying mental models when developing an 

interaction technique since it is a key aspect when defining the vocabulary and when further testing and analyzing the 

intuitiveness. 
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We introduced a classification scheme to group input vocabularies for UAV systems based on their underlying 

mental models. Using this scheme, we clustered the discussed techniques into three classes – Imitative, Instrumented, 

and Intelligent. Each class has been defined and illustrated with corresponding techniques. The introduced concept 

was used to assess the intuitiveness of the interaction techniques. Table 1 provides references in accordance with the 

introduced classification scheme.  

Table 1. Classification scheme of input vocabularies for UAV systems. 

Scope Imitative Instrumented Intelligent 

A single UAV [4],[5],[6],[7] [7],[20] [3],[11],[15] 

A group of UAVs - - [10],[12],[14],[22] 

The literature overview has revealed several gaps that should be covered: (1) multi-modal interaction and (2) the 

potential of gaze direction, facial expressions, and speech as input modalities are still laid aside and further research 

is needed; (3) most of the presented works are focused on single agent UAV systems and there are just a few papers 

addressing more complex multi-agent systems; (4) the majority of gesture-based interfaces are considered for cases 

when a UAV system is within operator’s field of view and it remains open whether gesture-based interaction would 

be beneficial in case of indirect observation; (5) various aspects related to ‘socialization’ of UAVs have to be further 

investigated.  
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